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We present our recent new calibration of the ruby pressure scale 
based on experimentally obtained reference curves. We discuss 
important points for accurate calibration of the ruby gauge: use of an 
appropriate experimentally-based calibration method, use of quasi-
hydrostatic data, and the question of the fitting form used for 
extrapolation.  

 
 
I. INTRODUCTION 

The shift of the ruby fluorescence R-line with pressure, proposed as a practical pressure 
gauge by Forman et al. (1972), has enabled widespread quantitative ultra-high pressure 
experiments using diamond anvil cells. The accuracy of the experimental results obtained using 
this scale depends upon the accuracy of the calibration of the ruby gauge.  

We have recently presented a revised calibration of the ruby fluorescence pressure 
gauge under quasi-hydrostatic compression (Chijioke et al., 2005b).  This calibration was based 
on using experimental pressure references. Data used for the calibration were published data 
for ruby lineshift versus absolute pressure by Zha et al. (2000) published data for ruby lineshift 
versus volume of metal markers by Dewaele et al (2004), and our own measurements of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1. Difference between revised ruby scale and the currently used 

scale of (Mao et al., 1986). The difference is shown for the two fit forms (1) 
and (2), which differ in the pressure indicated above the 150 GPa limit of 
the calibration. 

70

60

50

40

30

20

10

0

-10

P
R
e
v
is

e
d
 C

a
lib

ra
ti

o
n
 -

 P
M

X
B
8

6
 (

G
P
a
)

400350300250200150100500

PRevised Calibration (GPa)

 Fit form (1)

 Fit form (2)



 2 

ruby lineshift versus volume of a gold marker. The metal volume data were converted to 
pressure using equations of state (EOSs) determined from shock wave and ultrasonic data in 
our recent study (Chijioke et al., 2005a) and from shock wave data in the recent work of Wang 
et al (2002).  A fit of the pressure as a function of ruby lineshift up to 150 GPa to the form 
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yields coefficients A = 1873 ± 6.7 GPa and B = 10.82 ± 0.14. A fit to a second order polynomial  
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yields coefficients A = 1794 ± 8.4 GPa and B = 8.68 ± 0.15. In Figure 1 we show the difference 
between the revised calibration and the previously widely-used calibration (Mao et al., 1986) 
with A = 1904 and B = 7.665 in form (1). 
 In the remainder of this paper we consider in more detail the question of accurate 
calibration of the ruby pressure gauge. In section II we critically discuss various methods  
of calibration and in section III we present the various calibration data in the literature and 
indicate the basis of our selection of data sets used in the calibration. In  
section IV we present and briefly discuss the shock-wave-reduced isotherms (SWRIs) that we 
have used for the calibration. In section V we consider calibration of the ruby gauge based on 
the extrapolated equation of state of diamond, which a number of authors have done. In section 
VI we consider the form of the equation fit to the ruby calibration data, which is relevant to 
extrapolation of the scale beyond the region of calibration. 
 
 
II. CALIBRATION METHODS 
 To calibrate the ruby gauge, the wavelength of fluorescent emission must be measured 
in an experiment simultaneously with a measurement of applied pressure.  There are different 
methods for determining pressure, with the most fundamental methods being the most valid for 
calibration. In order of validity, acceptable ways of determining pressure for a calibration are (i) 
absolute pressure measurement via the free-piston gauge, (ii) absolute pressure calibration 
based on a thermodynamic relation among measured properties, and (iii) equations of state 
obtained from fundamental measurements at conditions close to those being considered, such 
as shock-wave-reduced isotherms. Additional methods sometimes used to determine pressure 
are (iv) equations of state extrapolated far from the conditions of measurement and (v) 
theoretical equations of state. These last two methods are not deemed appropriate for 
calibration given the availability of the more fundamental pressure measurements. It is also 
possible to transfer to ruby the calibration from another secondary gauge, such as another 
material with pressure-dependent fluorescence; in this case the validity of the ruby calibration 
depends upon the calibration of the initial secondary gauge. 
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A. Free piston gauge 
 If a hydrostatic medium is compressed in a piston-cylinder chamber, the pressure is 
given absolutely by 
 

     P =
F

A
      (3) 

 
where F is the force applied to the medium by the piston and A is the cross-sectional area of the 
piston, both related to fundamental standards. However this technique is restricted to low 
pressures because at pressures greater than a few GPa, friction and deformation in piston-
cylinder devices lead to large corrections and uncertainties. 
 
B. Thermodynamic relation 
 As described by Decker and Barnett in 1970 (Decker and Barnett, 1970) and Ruoff et al 
in 1973 (Ruoff et al., 1973), an empirical pressure parameter can be calibrated against absolute 
pressure using a thermodynamic relation among thermodynamic properties which vary with 
pressure, if these properties can all be measured as a function of the empirical pressure 
parameter. In particular, the definition of the bulk modulus 
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has been used, where BT is the isothermal bulk modulus, BS is the adiabatic bulk modulus, α is 
the volume coefficient of thermal expansion, V is the volume, T is the temperature and CP is the 
constant-pressure specific heat. Zha et al (2000)have used this technique on MgO to calibrate 
ruby under pressure to 55 GPa.  
 
C. Shock-wave-reduced isotherms 
 X-ray measurement of the volume of a marker material with a known EOS, which is 
compressed, together with a piece a ruby in the experimental cell, provide a means of 
determining pressure. Mao et al (1978) introduced the technique of using SWRIs as EOSs to 
calibrate the ruby pressure gauge. Shock wave experiments measure stress-volume-energy 
data points in the EOS space of a material via the Rankine-Hugoniot relations (see for example 
McQueen et. al. (1970)). In the region up to 300 GPa for metals and other relatively 
incompressible substances, these data points are not far removed from the isotherm of the 
material. A relatively small temperature correction and an even smaller stress correction convert 
the shock wave data to a room temperature P(V) isotherm. 
 
D. Extrapolated equations of state 
 Measurements of the elastic properties of a material at low pressures, such as are done 
by ultrasonic techniques, yield the bulk modulus of the material and its pressure derivative(s). 
The P(V) isotherm of the material can be extrapolated from these data to pressures above those 
at which the measurements were made. While the error in the isotherm thus obtained will be 
small at pressures not far above the range of the measurements, at higher pressures the error 
can become large; the accuracy of the equation of state then depends strongly on the 
extrapolation of the low-pressure data. Equations of state thus determined no longer satisfy the 
fundamental requirement for an experiment based calibration standard. 
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E. Theoretical equations of state 
 It is also possible to derive the equation of state of a marker material completely 
theoretically, from first principles. The unsuitability of such equations of state for calibration is 
evident.  
 
III. RUBY CALIBRATION DATA 

The ruby pressure gauge was first calibrated by Piermarini et al (1975) up to 20 GPa  
using the theoretical Decker equation of state of sodium chloride (Decker, 1971). Since then 
there have been several calibration lineshift-vs-pressure data sets generated and corresponding 
recalibrations of the ruby scale. These data sets are summarized in Table 1 and the ruby scales 
obtained from them are plotted in Figure 2. 

The best data to use for calibrating the ruby scale are those obtained under the most 
nearly hydrostatic conditions. Non-hydrostaticity leads to pressure gradients in the sample, 
meaning that a ruby chip embedded at some location is not at the same pressure as all of the 
surrounding medium. Non-hydrostatic stress also alters the shift of the R-line wavelength with 
pressure, this shift being known to be different for uniaxial stresses in different crystallographic 
directions (He and Clarke, 1995, Chai and Brown, 1996). Under high pressures in the 
gigapascal range, all known materials are solid at room temperature, and thus do not provide a 
strictly hydrostatic environment for pressurization. However, some solids have sufficiently low 
yield strengths even at very high pressures to allow a distribution of stresses to be achieved that 
is close to hydrostatic. Helium is the best known such medium, followed by hydrogen. Neon is 
probably a reasonably good quasi-hydrostatic medium, but has not been studied for this 
property to high enough pressures. 

 
 

Reference Method Pressure Limit 
 (Piermarini et al., 1975)  Marker (NaCl): theoretical EOS 

Methanol-ethanol medium 
20 GPa 

(Mao et al., 1978) Marker (Ag, Cu, Mo, Pd): SWRI 
Methanol-ethanol medium 

100 GPa 

(Bell et al., 1986) Marker (Cu, Au): SWRI and mixed EOS 
No medium 

180 GPa 

(Mao et al., 1986) Marker (Ag, Cu): SWRI 
Argon medium 

80 GPa 

(Aleksandrov et al., 1987) Marker (Diamond): extrapolated EOS 
Helium medium 

40 GPa 

(Hemley et al., 1989) Marker (W): SWRI 
Neon medium 

110 GPa 

(Zha et al., 2000) Thermodynamic calibration using MgO 
Helium medium 

55 GPa 

(Holzapfel, 2003) Marker (Diamond, W): extrapolated EOS  
and SWRI, Helium and neon media 

140 GPa 

(Dorogokupets and Oganov, 2003) Marker (Ag, Cu): SWRI 
Argon medium 

80 GPa 

(Dewaele et al., 2004) Marker (Al, Au, Cu, Pt, Ta, W): SWRI 
Helium medium 

150 GPa 

(Chijioke et al., 2005b) Marker (Au): SWRI 
Xenon and hydrogen media 

100 GPa 

 
Table 1. Ruby calibrations. Data sets used for the revised calibration are indicated in boldface. 
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Xenon is also surprisingly a fairly good quasi-hydrostatic medium up to 100 GPa, probably due 
to an extended phase transition in the range up to 100 GPa (Cynn et al., 2001, Asuami and 
Ruoff, 1986) that allows redistribution of stresses. An alternative means of achieving quasi-
hydrostatic pressurization is to melt the pressure medium after pressurization and then allow it 
to re-solidify and cool to room temperature before making pressure and ruby lineshift 
measurements. 

From the data sets listed in Table 1, we select three as being most suitable for 
calibration. These are indicated in bold and are data sets obtained in quasi-hydrostatic media 
and in which pressure was determined either by thermodynamic relation or from volume 
measurements on pressure markers for which SWRIs are available. The data set of Dewaele et 
al (2004) is much more extensive than the others selected and therefore dominates the 
calibration. (Dewaele et al present 233 data points in a range up to 150 GPa, versus 28 data 
points up to 55 GPa by Zha et al (2000) and 9 data points up to 100 GPa from our study 
(Chijioke et al., 2005b)). As Dewaele et al. used pressure markers for which SWRIs are 
available as the means of determining pressure, the accuracy of the SWRIs is of critical 
importance to this calibration. 

 
 

IV. SHOCK-WAVE-REDUCED ISOTHERMS 
 In shock-wave experiments, the quantities usually measured are the shock velocity us 
and velocity of the material after transit of the shock wave, known as the particle velocity up. 
These are related to the axial stress σ, Volume V and Energy E of the shocked material via the 
Rankine-Hugoniot equations: 
 

Figure 2. Calibrations of the ruby scale in references listed in 
Table 1, and our revised calibration as fit to form (1). 
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where σ0, V0, E0 and u0 are the axial stress, volume, energy and velocity of the unshocked 
material. The locus of P-V-E points generated by shocks of varying strength from a single initial 
state of a material is called a Hugoniot. Reverberating-shock and ramped-pressure-profile 
(Barker, 1983) techniques allow shock compression to off-Hugoniot points such as points along 
an isentrope. Corrections for the effects of material strength and temperature “reduce” the 
shock–generated data points to a P-V isotherm. 

In obtaining an isotherm from shock-wave data there are three items to be addressed: 
the accuracy of the shock data, the correction for the material strength, and the thermal 
correction. We address these three questions in turn for the materials of concern for the present 
calibration - aluminum, copper, gold, platinum, tantalum and tungsten. 
 
(i) Hugoniot Data 
 The pressure region of concern for the present calibration is that up to 150 GPa. Within 
this region, the most accurate Hugoniot data available in the literature are shown in Table 2. 
The Hugoniots are presented in the form of a linear fit to the data points 
 
    us = C + S !up       (7) 
 
Mitchell and Nellis (1981) reported data for Al, Cu and Ta with error bars and error analyses, 
and the 1-standard-deviation value of these at 150 GPa are shown in Table 2.  
 
 
Metal C 

(cm/s) 
S ρ0 

(g/cm3) 
Range of validity 
(GPa on Hugoniot) 

δσ/σ  
(150 GPa) 

Reference 

Al 0.5386 1.339 2.707 8 - 200 0.020 (Mitchell and Nellis, 1981) 
Cu 0.3933 1.500 8.939 16 - 330 0.009 (Mitchell and Nellis, 1981) 
Ta 0.3430 1.19 16.66 26 - 222  (McQueen et al., 1970) 
 0.3293 1.307 16.68 55 - 430 0.010 (Mitchell and Nellis, 1981) 
W 0.4022 1.260 19.25 27 - 680  (Hixson and Fritz, 1992) 
Au 0.307 1.54 19.24 25 - 190  (Marsh, 1980) 
Pt 0.3641 1.541 21.41 32 - 660  (Holmes et al., 1989) 
 

Table 2. Hugoniot data for SWRIs. 
 

 
(ii) Strength correction 
 The shock data presented here were obtained under conditions of uniaxial compression, 
where the quantity given by the Rankine-Hugoniot equations is the stress in the direction of 
shock propagation. Because the materials being compressed are solids and thus have some 
strength, there is a small difference between this component of stress and the mean normal 
stress in the material, i.e. the pressure. This strength offset has been measured for Al (Asay et 
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al., 1986), and Cu, Ta and W (Chhabildas and Asay, 1992). The magnitude of this strength 
correction as a percentage of the pressure on the isotherm is plotted in Figure 3.  
 
(iii) Thermal correction 

To reduce a Hugoniot to an accurate isotherm, the relative magnitude of the thermal 
pressure generated by shock compression should be as small as possible. This thermal 
pressure increases with the compressibility of the material under study and with pressure along 
the Hugoniot. Over the years there have been numerous calculations of the thermal pressure, of 
varying sophistication. Wang et al (2002, 2004) have done recent first-principles calculations of 
this pressure for the materials under consideration using a classical mean field potential model 
in which all thermal contributions are included self-consistently. These thermal pressures are 
plotted as percentages of pressure on the isotherm in Figure 4. The maximum thermal pressure 
in the range under consideration is 32% for aluminum at 150 GPa. For the other materials under 
consideration it is less than 25% up to 150 GPa. 
 

 
The isotherms thus generated for Al, Cu, Ta and W have been fit to the form 
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where X = V/V0, with coefficients tabulated in Table 3. As shown in Table 2, the Hugoniot data 
used is valid from some elevated pressure (ranging from 8 GPa for aluminum to 27 GPa for 
Tungsten) up to an upper pressure limit. To obtain isotherms that are accurate down to ambient 
pressure we fixed the bulk modulus in the fits shown in Table 3 to the ultrasonically measured 
values (Katahara et al., 1979, van’t-Klooster et al., 1979, Tallon and Wolfenden, 1979) .  Thus the 
fits  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Hugoniot strength corrections as 
a percentage of pressure on the isotherm. 
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Figure 4. Thermal corrections to reduce 
Hugoniot to isotherm, as a function of pressure 
on the isotherm.  
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represent combined shock- and ultrasonically-derived isotherms, the data from each type of 
experiment are used only in the region of validity. Also shown in Table 3 are fits to isotherms for 
Au and Pt generated by Wang et al (2002) which incorporate thermal correction but no strength 
correction, and which we have used in the present ruby calibration. In Figure 5 we show the 
deviation between the fits given in Table 3, used for the ruby calibration, and the actual reduced 
shock data. This deviation is seen to be generally less than 0.5 GPa throughout the range of the 
SWRI. 
 As noted above, with increasing pressure on the Hugoniot the relative magnitude of the 
thermal pressure increases, and ultimately diverges (Rozsnyai et al., 2001). Thus the thermal 
pressure limits the fundamental accuracy of isotherms obtained from Hugoniots for pressures 
much higher than those considered here. Isentropic shock compression [e.g.(Asay et al., 1986)], 
however, enables high compression to be achieved with greatly reduced thermal pressure, at 
the cost of a somewhat increased material strength correction. Isentropic compression thus 
provides a means for obtaining calibration-quality shock-derived-isotherms to much higher 
pressures. 
 
 
Material K0 η  β ξ  δ  Pressure limit (GPa) Reference 
Al 72.6 4.1267 26.1269 -154.33 326.69 200 GPa (Chijioke et al., 2005a) 
Cu 133.3 5.4167 15.921 -90.223 235.81 200 (Chijioke et al., 2005a) 
Ta 194.1 1.9265 52.348 -402.72 1031.5 300 (Chijioke et al., 2005a) 
W 308.6 2.7914 45.694 -409.97 1290.2 300 (Chijioke et al., 2005a) 
Au 177.26 6.3800 1.9334 -1.0292 33.941 513 (Wang et al., 2002) 
Pt 280.03 6.3289 -1.3811 61.492 -156.48 660 (Wang et al., 2002) 
 

Table 3. Isotherms used for ruby scale calibration. 
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V. CALIBRATION USING THE EXTRAPOLATED EQUATION OF STATE OF DIAMOND 
 Recalibrations of the ruby scale have been proposed based on the equation of state of 
diamond (Aleksandrov et al., 1987, Holzapfel, 2003). The equation of state used is based on 
ultrasonic measurements of K0 and K0′ , the bulk modulus and its derivative at zero pressure, 
extrapolated up to high pressure. Generally, an equation of state extrapolated to conditions far 
beyond the range of measurement is not appropriate for calibration, as the EOS is largely based 
on the extrapolation.  However the highly incompressible nature of diamond is favorable in this 
regard, as the compressions are still small at high pressures (~15% volumetric compression at 
100 GPa) and therefore the extrapolation may retain some validity within this pressure range. 
As a result, within this range the EOS is relatively insensitive to the extrapolation form. Thus, 
although extrapolation is not supported on principle as a means of calibration, as a practical 
matter an extrapolated equation of state of diamond based on ultrasonic measurements could 
be a fairly accurate reference up to ~100 GPa. 

However such extrapolated equations of state depend sensitively on the accuracy of the 
ultrasonic measurements. While there is high confidence in the ultrasonic value of the bulk 
modulus K0, the present uncertainty in its derivative K0′ is estimated at ~12.5% (McSkimin and 
Andreatch, 1972), leading to an intolerably large uncertainty at pressures above ~ 60 GPa.  
 
VI. FITTING FORM OF THE RUBY SCALE FOR EXTRAPOLATION 
 Within the range of the calibration, any form with sufficient flexibility to fit the data is 
acceptable. However current diamond cell experiments often go to pressures above 200 GPa 
and occasionally to pressures above 300 GPa, whereas the ruby scale is calibrated only to 150 
GPa. Thus, it is necessary to extrapolate beyond the range of the calibration, making important 
the details of the fitting form used. Techniques developed by Chen and Silvera (1996) and 
Eggert et al (1991, 1988) enable the measurement of ruby fluorescence to pressures above 250 
GPa. 
 Up to the present 150 GPa limit of calibration, we have found that two parameters are 
sufficient to fit the calibration data. The simplest such form is a second order polynomial, Eq. 
(2). Other forms may result from various assumptions or theoretical models. In particular, the 
form Eq. (1) introduced by Mao et al (1978) and used in most subsequent calibrations results 
from the assumption that ∂P/∂(lnλ) is a linear function of pressure. This added constraint leads 
to higher extrapolated pressures than with a polynomial. 
 Holzapfel (2003) proposed the three-parameter form 
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which reduces to the form (1) in the limit C → 0.  The primary effect of the additional parameter 
is to increase the flexibility of the fit, allowing a change in curvature at high pressures. 
 In general, any form to be used in preference to the polynomial Eq. (2) should have 
some theoretical justification. Such theoretically-motivated forms might in principle be obtained 
by combining an appropriate form for the P-V EOS with an appropriate form for the level shift as 
a function of volume.  So far there has not been established along these lines an accepted form 
for the pressure as a function of lineshift. In this regard it may be noted that a two-term Taylor 
expansion of the pressure as a function of volume about the zero pressure point 
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yields the quadratic P(λ) form Eq. (2) if the R-line energy level scales linearly with volume.  
The P-V form (10) has been indicated by Syassen (2004) to be appropriate for pressures up to 
~ 200 GPa or greater, while Eggert et al (1989) have found support for a linear variation of the 
R-line level with volume in the context of a crystal field analysis. 
 Further investigation may lead to a more strongly justified analytical form for the ruby 
lineshift as a function of pressure.  For the present we propose to continue using the form Eq. 1 
that does a good job in fitting the data up to 150 GPa and has been widely used by the 
community.  
 
VII. CONCLUSION 
 We have combined available quasi-hydrostatic ruby lineshift data with improved shock-
wave-reduced isotherms to provide a new calibration of the ruby pressure scale. The revised 
scale indicates higher pressures at a given lineshift than the widely used calibration MXB86 
(Mao et al., 1986), in broad agreement with the conclusions of several investigators. We have 
discussed the question of appropriate methods of determining pressure for a calibration and the 
question of the fitting form for the ruby scale. 
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