High pressure transport and AC calorimetric studies of some correlated electron systems

<u>D. Jaccard</u>^a, R. Lortz^a, A. Junod, P. Pedrazzini^a, A. T. Holmes^b ^a DPMC, University of Geneva, 24 Quai E.-Ansermet, 1211 Genève 4, Switzerland ^b KYOKUGEN, Osaka University, Toyonaka, Osaka 560-8531, Japan

Some recent results are presented:

1) For the first time, the specific-heat anomaly in the overdoped range of a single crystal of the high-temperature superconductor $YBa_2Cu_3O_7$ has been studied under high pressure, up to 10 GPa, using AC calorimetry. The evolution of the specific-heat jump, as well as the bulk T_c , are consistent with a pressure-induced increase of the charge-carrier concentration n_h by about 0.02.

2) The pressure range of the non-Fermi liquid (NFL) region of MnSi has been investigated by resistivity. In contrast with predictions of the current model, the exponent *n*=3/2 is stable from $p_c = 1.46$ GPa up to 4.5 GPa and even at 8 GPa, the Fermi liquid relationship $\rho = AT^n$ with *n*=2 was not still recovered.

3) For the element Fe, NFL behaviour as revealed by resistivity variation with n=5/3 extends above the entire spin-mediated superconducting region. [1] At p = 31 GPa, where T_c vanishes, the *A* coefficient has decreased by around 50%, indicating a threshold value of *A* for superconductivity.

4) The high pressure superconductivity of CeCu₂Si₂ can be understood via an attractive interaction driven by charge fluctuations around a first order transition, with a critical endpoint at sufficiently low temperature. [1] It is noteworthy that superconductivity can develop despite huge residual resistivities, of the order of the loffe-Regel limit.

[1] D, Jaccard, A. T. Holmes, cond/mat 0410143

corresponding author: D. Jaccard e-mail: Didier.Jaccard@physics.unige.ch