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Abstract

Our current equation of state (EOS) for Beryllium is based on experimental data and
empirical models. This construction does not fully constrain the resulting EOS, and recently
uncovered experimental results in the literature show slight disagreement with the
established EOS of Be. To address this disagreement we have calculated the cold curve and
the phonons for Be in the hexagonal close-packed (hcp) structure using density functional
theory. From these we extract the thermal expansion and the Grüneisen parameter; the
former agrees well with experiment, the latter leads to a slight adjustment of the EOS. The
same calculations for Be in the body-centered cubic (bcc) structure leads to a predicted
structural phase transition from hcp to bcc at a pressure of 415 GPa (at 0 K) that decreases
to 360 GPa (near the melting temperature Tm=1560 K).

Introduction

Beryllium has a simple atomic configuration with four s electrons. The energy of the 2p states
lies in close proximity to that of the 2s states, which results in several anomalies in the solid
state, such as a Poisson ratio of only 0.05 and an unusually high Debye temperature of 1440
K. At ambient pressure Be remains in the hexagonal close packed (hcp) crystal structure up
to temperatures close to melting at 1560 K, transforming into the body-centered cubic (bcc)
structure at 1530 K. The hcp crystal is far from ideal with a c/a ratio of 1.568 at ambient
conditions.

The zero temperature isotherms (Lyon et al., 1998) that were originally derived from the
experimental shock Hugoniot (Marsh, 1980) are calculated from the Mie-Grüneisen reduction
of the Hugoniot data (McQueen et al., 1970). For zero to room temperature corrections the
thermal equation of state was from the Debye phonon model with a minor contribution from
the electronic specific heat. For this analysis the Grüneisen parameter g as a function of
density r is required. The initial modelling used a form for g that is quadratic in the inverse
density r with the values g=1.7 and dg/d(ln r)=-1 at ambient pressure and temperature as
well as the limiting value of g=2/3 for rÆ•. This is reasonable and standard modelling but it
does not match more recent diamond anvil data (Velisavljevic et al., 2002). To obtain
agreement with this data, it would be necessary to have a peak in g (a value of 1.965 at
r=2.96 g/cm3).

Such a peak in the form of the Grüneisen parameter as a function of density is quite unlikely.
This motivated the DFT study of beryllium presented here, which also aimed to address a
second discrepency: Under compression beryllium is predicted theoretically to transform
from the hcp to the bcc (and perhaps the fcc) crystal structure at a pressure between 100
GPa and 200 GPa (McMahan, 1982; Lam et al., 1984). Experimentally this transition has not
been observed up to a maximum (static) pressure of 171 GPa (Ming and Manghani, 1984;
Olijnyk and Jephcoat, 2000; Nakano et al., 2002, Velisavljevic et al., 2002).
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Methodology

Electronic structure calculations were performed with three different density functional theory
(DFT) augmented wave methods. The methods have been extensively used as well as
described in the literature (see references in the following three paragraphs); here we touch
only on the main differences and common points. All methods partition real space into a
spherical region around the atomic nucleus and an interstitial region but with differing
representations of the electronic density. The reported calculations are scalar-relativistic,
neglecting spin-orbit coupling for the valence electrons. The parameters controlling
convergence were chosen to assure convergence.

(1) The self-consistent full potential linear muffin-tin orbital (FP-LMTO) method (Wills and
Cooper, 1987; Wills et al., 2000) uses radial basis functions inside the nucleus-centered,
spherical region (muffin-tin spheres). These are linear combinations of radial wave functions
and their energy derivatives; outside the muffin-tin spheres the basis functions are
combinations of Neuman or Hankel functions. The sphere is scaled with volume so that it
always has a ratio of 0.758. Both the 1s and 2s electrons were treated as valence electrons,
and the electron exchange-correlation was treated in the generalized gradient approximation
(GGA) known as PBE96 (Perdew et al., 1996).

Figure 1. Cold curves for Be in the hcp and bcc structures using the three
methods. (a) Energies for beryllium in the hcp and bcc structures plotted
relative to the minimal energy of the hcp structure. (b) Differences in the total
energies of the hcp structure relative to the results calculated with the FP-
LMTO method. (c) Differences in the total energies of the bcc structure
relative to the FP-LMTO results. (d) Calculated pressure for beryllium in the
hcp and bcc structures. (e) Differences in the pressure of the hcp structure
relative to the FP-LMTO results. (f) Differences in the pressure of the bcc
structure relative to the FP-LMTO results.

 (2) The projector-augmented wave (PAW) method (Blöchl, 1994) implemented in VASP
(Kresse and Furthmüller, 1996; Kresse and Joubert, 1999) uses a superposition of a plane
wave basis set in the interstitial region with atomic and pseudo atomic orbitals in the nucleus-
centered region, which has a constant radius of 1.8 a0. Brillouin zone integrations were done
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with the improved tetrahedron method (Blöchl et al., 1994). Both the 1s and 2s electrons
were treated as valence electrons; the calculations use the generalized gradient
approximation (GGA) known as PW91 (Perdew, 1991).

(3) The all-electron, full potential augmented plane wave plus local orbital (APW+lo) method
as implemented in WIEN2k (Blaha et al., 2001) uses linear combinations of radial functions
multiplied by spherical harmonics inside the sphere (of constant radius 1.374 a0; 1.7 a0 for
the phonon calculations) and plane waves in the interstitial region. Brillouin zone integrations
were done using the improved tetrahedron method (Blöchl et al., 1994). The calculations use
the generalized gradient approximation (GGA) known as PBE96 (Perdew et al., 1996). In
contrast to the FP-LMTO and PAW calculations the APW+lo 1s electrons are treated as core
states.

Figure 1 compares the cold curves of Be calculated with the three electronic structure
methods. The differences for both hcp and bcc crystal structures are negligible near the
experimental equilibrium volume and remain quite small under compression. The calculated
hcp bulk modulus at equilibrium is consistent among the three methods (BFP-LMTO=121 GPa,
BPAW=120 GPa, BAPW+lo=123 GPa) but somewhat smaller than the experimental value
(Bexp=130 GPa); similar agreement is found for the hcp equilibrium volume (VFP-LMTO=53.3 a0

3,
VPAW=53.5 a0

3, VAPW+lo=53.3 a0
3, Vexp=54.7 a0

3).

The phonons were calculated with the direct force method (Kunc and Martin, 1982; Wei and
Chou, 1992; Frank et al., 1995; Parlinski et al., 1997). This method requires large simulation
cells consisting of repeated unit cells. In these large simulation cells the force constants are
evaluated from the forces on all atoms calculated in response to the displacement of a basis
atom in one unit cell. The force constants are Fourier transformed with a given wave vector
q , resulting in the q–dependent dynamical matrix, which upon diagonalization gives the
corresponding phonon frequencies.

The evaluation of the force constants using small atomic displacements (i.e., remaining in the
harmonic regime) for each crystal structure at a sequence of volumes leads to the resulting
phonon frequencies being volume dependent (quasiharmonic approximation), which implicitly
includes some anharmonic contributions. The calculations are therefore most accurate at low
temperatures but less reliable at temperatures near melting because of missing high-
temperature anharmonic contributions. Melting itself is nonexistent in the quasiharmonic
approximation.

Extracting the Gibbs free energy from the calculations involves integrating over the phonon
density of states (DOS) as well as the electronic DOS (Pathria, 1972). The latter, evaluated
from the electronic DOS that each code generates, plays a negligible role. The phonon DOS
is obtained by calculating the vibrational frequencies on a mesh in reciprocal space, with the
mesh chosen to be fine enough to guarantee convergence.

Results

The calculation of the Grüneisen parameter g as a function of density r rests on evaluating
the phonons and their logarithmic phonon moment q0 for a sequence of volumes. Within this
procedure we make two comparisons with experimental data that are independent of the
shock data: the phonon dispersion in the hcp structure at equilibrium and the thermal
expansion. The comparisons (shown in Figs. 2 and 3) give some confidence that the DFT
calculations, while not perfect, are accurate enough to investigate the presence or absence
of an anomaly in the Grüneisen parameter.
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Figure 2. Calculated and experimental phonon dispersions at the experimental
volume and c/a ratio. The acoustic branches show excellent agreement
between experimental and calculated phonon frequencies. The differences in
the optical branches between the two methods are of the same magnitude as
the differences between either method and experiment.

Figure 3. Thermal expansion of hcp Be. The ratio of theoretical to
experimental equilibrium volume (at 300 K) is 0.977 for the cold curve and
improves to 0.995 when the zero point energy of the calculated phonons is
included.

Based on the phonon DOS we have evaluated the logarithmic phonon moment q0 for both
the hcp and bcc crystal structures (see Fig. 4a). At each volume the q0 for the bcc structure
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lies lower than that for the hcp structure; similarly, plotting the moments as a function of
pressure does not change this ordering. This suggests that an increase in temperature will
lower the Gibbs free energy of the bcc structure more rapidly than that of the hcp structure.

The average phonon frequency provides a measure for how much thermal energy Be can
absorb. How this measure changes with volume determines the thermal part of the EOS and
is quantified in the Grüneisen parameter G. The Grüneisen parameter is given by the
(logarithmic) derivative of q0 with respect to decreasing volume. The phonon moments are fit
to a functional form chosen such that the Grüneisen parameter depends linearly on the
volume and tends to 2/3 in the limit of infinite density.

Figure 4b shows the resulting Grüneisen parameter in comparison with the original EOS
model as well as the experimental data point at equilibrium density. The differences are
reasonably small, a slight change in the model (now termed `refit EOS model’) improves the
agreement with only negligible increases in the differences obtained for other variables such
as the cold curves. The DFT results show no evidence of any anomalous behavior of the
Grüneisen parameter.

Figure 4. (a) Calculated logarithmic phonon moments for the hcp and bcc
structures as function of volume. (b) Grüneisen parameter for hcp Be.

Figure 5 shows the hcp to bcc structural phase transition predicted by the calculations
presented here. Based on the cold curves the transition occurs at 415 GPa for the FP-LMTO
and PAW calculations and at 440 GPa for the APW+lo calculations. This difference is likely
to be due to the different treatment of the 1s electron. The inclusion of the effect of zero point
energy from the phonons (calculated using the PAW method) raises the zero temperature
transition by about 30 GPa.

With increasing temperature the relative stability changes in favor of the bcc crystal structure,
as expected from the lower phonon moment of the bcc structure relative to the hcp value.
The slope of the transition line levels off to a constant value in the range of 800 K. This is the
temperature range in which all phonon states have been occupied. Anharmonic effects
outside the scope of the quasiharmonic approximation, i.e., phonon-phonon interactions,
start to become important at these high temperatures. The absence of these effects is
evident in the absence of melting in the quasiharmonic approximation. The experimentally
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observed temperature-induced phase transition from hcp to bcc at ambient pressure occurs
at temperatures very close to melting. Since the quasiharmonic approximation breaks down
at these temperatures the calculated hcp to bcc phase transition at ambient pressure is not
adequately described.

Figure 5. (a) Differences in the enthalpies between the two structures in the
three methods. The predicted phase transition from hcp to bcc based on the
cold curves (without zero-point energy) is at 415 GPa for FP-LMTO and PAW
and at 440 GPa for APW+lo (where the 1s electrons are treated differently).
(b) Predicted phase transition line for beryllium in the quasiharmonic
approximation. The temperature dependence is determined by the phonons
and is only valid at temperatures well below melting (1560 K).

Discussion

An anomalous behavior of the Grüneisen parameter as a function of density, as suggested
by recent diamond anvil cell experiments (Velisavljevic et al., 2002), is not supported by the
calculations presented here. The phonon frequencies stiffen with increasing pressure in a
smooth, monotonic fashion. We note that Velisavljevic et al. did not use a pressure medium
in the experimental set up for the highest pressure data points. The cold curve as well as the
phonon moments and the Grüneisen parameter calculated here do, on the other hand, agree
very well with the EOS model extracted from shock experiments.

Agreement with experiment is also found in predicting a pressure-induced, low-temperature
hcp to bcc structural phase transition. The calculations presented here place this transition at
pressures well above the highest pressure achieved in (static) experiments in which no
transition was observed. This disagrees with earlier, more approximate calculations based on
DFT, suggesting that the approximations used in those calculations were too severe for the
case of beryllium. In particular, the earlier calculations do not optimize the c/a ratio for hcp Be
at each volume. We find that without this optimization the hcp to bcc transition would be
significantly lower.

On the other hand, the observed temperature-induced, low-pressure hcp to bcc structural
phase transition is absent in the results calculated here. This transition occurs at
temperatures close to melting, i.e., at temperatures where the quasiharmonic approximation
looses its validity.
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Conclusion

Using three different augmented wave DFT methods the EOS of beryllium was calculated
and compared with previous experimental and theoretical data. Results from the three
methods agree very well with each other. Energy differences on the order of one mRy
appear at high pressures. Treating the 1s electrons as core instead of valence electrons
affects the calculated hcp-bcc structural phase transition pressure by about 5%. The
calculated pressure is somewhat over 400 GPa, more than twice the highest pressure in
experiments that did not find such a transition.

Using the direct force method the phonons were calculated for the hcp and bcc crystal
structures. In the hcp structure good agreement is found with the experimentally measured
phonon dispersion and thermal expansion. The calculated Grüneisen parameter is also very
close to the model used to fit shock experiments.

Two discrepancies remain between the calculated results and experiment. The calculations
do not predict a low-pressure hcp-bcc phase transition at temperatures just below melting,
this failure is attributed to the quasiharmonic approximation which is not valid near melting.
The calculations also do not reveal any anomalous behavior in the Grüneisen parameter as
would be necessary to fit recent diamond anvil data, which is attributed to uncertainties
resulting from the lack of a pressure medium in those experiments.
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