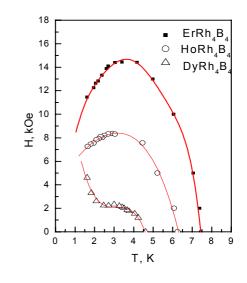
Superconductivity and magnetism of new rare earth ternary borides synthesized under high pressure

<u>A.V. Tsvyashchenko¹</u>, L.N. Fomicheva¹, I.E. Kostyleva¹, E.P. Khlybov¹, V.A. Sidorov¹, A.V. Kuznetsov², A. Zaleski³, V. Fritsch⁴

¹Vereshchagin Institute for High Pressure Physics, RAS, 142090 Troitsk, Russia ²Moscow Engineering Physics Institute, Kashirskoe sh. 31, 115409 Moscow, Russia

³International Laboratory of High Magnetic Field and Low Temperatures,

53-421 Wrocław<u>,</u> ul. Gajowicka 95, Poland


⁴Los Alamos National Laboratory, Los Alamos, New Mexico 87545,USA

A new group of ternary borides has been synthesized at pressure of 8 GPa. The formula of ternary borides is RRh₄B₄. These materials were also found to crystallize, like R(Rh_{0.85}Ru_{0.15})₄ B₄, in a body-centered-tetragonal structure with space group I4₁/acd like and 8 formula units per unit cell¹. The superconducting and magnetic transition temperatures and lattice constants for new RRh₄B₄ compounds are shown in Table. The magnetism of RRh₄B₄ (where R=Dy, Ho, Er) is evident in the upper critical field H_{c2} vs. temperature data that are displayed in Figure. The data of heat capacity C/T of DyRh₄B₄ vs. temperature in zero applied magnetic field have revealed two lambda-type anomalies at T_{c2}=3.3 K and T_{c3}=2.5 K as well.

This work was supported by the Russian Foundation for Basic Research (project nos. 04-02-16061).

¹D.C. Johnston, Solid State Comm., **24**, 699 (1977).

R	a (A ^o)	c (A ^o)	T _c (K)	T _m (K)
Dy	7,453	14,950	4,6	3,3
Ho	7,452	14,862	6,1	
Er	7,432	14,822	7,4	
Tm	7,412	14,870	7,2	
Yb	7,449	14,851	-	-
Lu	7,449	14,815	9,0	-
Y	7,434	14,934	10,7	-

