
## Associating Borate and Silicate Chemistry by Extreme Conditions: High–Pressure Synthesis and Crystal Structure of the Novel Borates $RE_3B_5O_{12}$ (RE = Er - Lu)

Holger Emme and <u>Hubert Huppertz</u>, Ludwig-Maximilians-Universität München, Butenandtstr. 5 – 13, D-81377 München, Germany, huh@cup.uni-muenchen.de

The diagonal relationship  $B \leftrightarrow Si$  enables the partial substitution of silicon for boron, leading to the substance class of borosilicates, which are widespread accessory minerals. Unfortunately, a complete substitution of silicon against boron in the tetrahedral position, keeping up the silicate structure, is hardly so simple.



**Fig. 1.** Comparison of the crystal structures of  $RE_3B_5O_{12}$  (RE = Er - Lu) (left; light polyhedra  $Q^3$ , dark polyhedra  $Q^4$ ) and semenovite (right). The light polyhedra in the structure of semenovite visualize the identity of the tetrahedral layers in  $RE_3B_5O_{12}$  (RE = Er - Lu) and semenovite.

By the use of high–pressure [1] (10 GPa, 1100 °C, Multianvil–technique) we were able to synthesize oxoborates with the new composition  $RE_3B_5O_{12}$  (RE = Er - Lu) (S. G. *Pmna*), which are homeotype to the beryllo–silicate mineral semenovite ((Fe<sup>2+</sup>, Mn, Zn, Ti) $RE_2Na_{0-2}(Ca, Na)_8(Si, Be)_{20}(O, OH, F)_{48}$ ) (Fig. 1). These results have important implications for the geochemistry of the Earth's mantle. This work is supported by the Deutsche Forschungsgemeinschaft and the European Science Foundation (COST D30/003/03).